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Abstract   

Background noise levels play a major role when it comes to ensuring compliance 
with French noise regulation. Background noise levels are usually assessed based 
on scatter plots: noise levels vs wind speeds and/or wind directions. 

In this article, we propose to model the background noise levels using machine 
learning techniques. 

The datasets are built with 10 minutes meteorological data as well as background 
noise level measured in dBA. 

We used gradient boosting which is a supervised machine learning technique used 
in classification and regression problems. The objective is to train the model for each 
dataset, and evaluate the accuracy of the regression algorithm. 

The results are very promising: the mean absolute error (MAE) of the prediction are 
1.07 dBA on dataset A and 1.71 dBA on dataset B. We are convinced that this 
technique will change the way we manage noise and meteorological data in 
acoustics and wind energy. 
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1. Introduction 

Background noise levels play a major role when it comes to ensuring compliance 
with French noise regulation. Background noise levels are assessed using scatter 
plots: noise levels vs wind speeds. This statistical analysis is carried out for several 
“homogeneous conditions” as defined in the French normative [1]: 

- Day/night 
- Wind direction sectors 
- Time of the day 
- Human activities 
- Meteorological conditions 
- Seasons 

The problem is that this methodology is not precise enough if we need an accurate 
model of the background noise vs meteorological conditions: the standard deviation 
is always greater than 3 dBA. First, we should take into account all the 
meteorological conditions available (not only wind speed and the wind direction as 
shown in figure 1). Secondly we need new techniques, with a better accuracy than 
the classical scatter plots.  
That’s why we decided to test machine learning techniques for a better assessment 
of noise levels around wind farms. 
 

 
Figure 1: Example of scatter plots for night period (22h-7h), for two homogeneous classes: Wind 
direction = South-West [135° - 315°[ and wind direction = North-East [315° - 135°[. In red = calculation 
of the median or extrapolation of the trend of background noise. 

2. Dataset & methodology 

2.1   Dataset 

During previous WTN conferences we showed that the wind speed gradient and the 
temperature difference had an influence on the background noise levels [2]. Those 
parameters also drive the refraction during noise propagation of wind turbine noise 
[3]. 
Based on this observation we decided to choose two datasets that include wind 
speed and temperature measured for at least two different heights. 
In the dataset A, the input features are: 

- Datetime, from 11/23/2017 to 12/14/2017 
- Temperature measured at a height of 1.5 m 
- Temperature measured at a height of 10m 
- Wind speed measured at a height of 10m 
- Wind speed measured at a height of 100m (hub height of the future turbines) 



- Wind direction 
- Relative humidity 
- Point of acquisition 

and the measured noise level, the target to model. 
 
In the dataset B, the input features are: 

- Datetime, from 05/03/2017 to 06/02/2017 
- Temperature measured at a height of 24.9m 
- Temperature measured at a height of 99.5m 
- Wind speed measured at a height of 24.9m 
- Wind speed measured at a height of 99.5m (hub height of the future turbines) 
- Wind direction 
- Relative humidity 
- Point of acquisition 

and the measured noise level, the target to model. 

  
In both cases the output data are background noise level L50,10min in dBA, 
measured at several locations around the wind farm project: there are 9 location of 
noise measurements in dataset A and 5 in dataset B. 
We decided to use only the night time period (22h-7h) of the dataset, because 
French regulation is more restrictive during night time. 
 

Datetime 
Temperature  
at 1.5m (°C) 

Temperature  
at 10m (°C) 

Wind speed 
measured 

at 10m 
(m/s) 

Wind speed 
measured 
at 100m 

(m/s) 

Wind 
direction 

(°) 

Relative 
humidity 

(%) 

Measure 
point 

Noise level 

11/23/2017 
00:00 

12.2 12.4 9.0 14.2 164 67.9 1 37.7 

11/23/2017 
00:10 

12.4 12.5 9.7 13.6 163 67.4 1 36.6 

11/23/2017 
00:20 

12.5 12.5 9.4 13.6 164 67.1 1 36.4 

11/23/2017  
00:30 

12.6 12.7 9.7 13.6 167 66.1 1 32.5 

11/23/2017  
00:40 

12.7 12.8 10.2 14.2 167 66.1 1 31.4 

11/23/2017 
00:50 

12.7 12.8 10.1 15.0 167 65.9 1 32.8 

Figure 2: First rows of dataset A 

 

2.2   Methodology 

To model this dataset, we propose to use a supervised machine learning approach. 
  
Supervised machine learning is part of artificial intelligence techniques which aims at 
learning from a set of features a decision pattern to predict target values. A 
supervised machine learning model thus implies two phases, the learning and the 
inference phase. 



In the learning phase, a model is trained on a set of samples that includes prepared 
features and corresponding targets in order to make the most accurate predictions. 
Once the model is trained, we can use it to infer new target values based on a 
dataset of new samples with the same set of features used for the training phase. 
  
Gradient boosting is a supervised machine learning technique used in classification 
and regression problems based on the concept of ensembling, i.e. combining weak 
learners to produce a prediction model. The model is built sequentially, first 
producing a first model which performance will be evaluated. 
The prediction errors are then weighted in order for the next model to correctly 
predict the difficult samples that were incorrectly predicted by the previous model. 
This process is repeated iteratively for a given number of rounds. 
  
 

 
Fig. 3 Gradient boosting explained simply for a supervised classification example. Decision trees are 
iteratively built in order to make better predictions for the incorrectly predicted values by the previous 
tree. 
 

For this paper, we have used XGBoost, a popular and efficient open-source   
implementation of gradient boosting [4]. XGboost is famous for winning machine 
learning competitions and because it adapts to a large variety of data types and 
offers a broad palette of hyperparameters that can be tuned to enhance model 
performance. This kind of model is thus a reliable choice for supervised machine 
learning regression problems, like the one presented in this paper. 
  
One problem that could occur during the training phase is overfitting. This term 
means that the model complexity is too high and has learned “by heart” the training 
set. The effect of overfitting is straightforward on new data, as the performance 
measures on new predictions get lower than those on the training set. To overcome 
this problem, we split the data in two sets - a training and a validation set - with a 
80/20% ratio. To assess model generalization and performance on new data, we will 
compare the predictions errors on these two sets. 



One other way to control overfitting is by performing cross-validation on the training 
set. This process involves to randomly partition the training data into several folds. 
One of the folds will be left out the training set and will be used for performance 
evaluation. This process is repeated for every fold and validation results are 
averaged over the different validation rounds to get a better evaluation of the model’s 
predictive capability. 
  
To evaluate the performance, we use the mean absolute error and the standard 

deviation error. Given a predicted value  �̂�𝑖 for and the corresponding ground truth 
value 𝑦𝑖, the mean absolute error over the 𝑛 samples in the dataset is defined as: 

𝑀𝐴𝐸 =  
1

𝑛
 ∑|�̂�𝑖  −  𝑦𝑖|

𝑛

𝑖=1

 

3. Results 

3.1   Global results 

The machine learning models trained on these two datasets offer good 
performances, as illustrated in Table 1, with low bias (1.10 dBA and 1.82 dBA on the 
test sets) and limited variance between the training and the validation sets (resp. 
0.79 dBA and 1.16 dBA on dataset A and B), which indicates good generalization of 
the models on data unseen during the training phase, and thus limited overfitting. 
 

  Train set Test set 
Test/train 

comparison 

Dataset 
Mean Abs 

Error 
(1) 

Std 
Dev.Error 

Mean Abs 
Error 
(2) 

Std Dev. 
Error 

Error difference 
(2) – (1) 

A 0.29 dBA 0.38 dBA 1.07 dBA 1.45 dBA 0.78 dBA 

B 0.60 dBA  0.83 dBA 1.71 dBA 2.42 dBA 1.11 dBA 

 
Table 1. Performance of the two models on the training and test sets 
 
Figures 4 and resp. 5 present the predicted values over the ground truth values for 
all the samples in the training and test sets. The difficult values to predict in the test 
set are clearly identified as outliers from the linear fit. Further exploration on the 
prediction errors could allow to better understand in which conditions the model is 
less accurate. We can also compare the generalization power of the two models by 
observing the distribution of errors for the train and test sets: more variance is 
observed on the training dataset A than on the training dataset B, and we observe 
the same pattern in the corresponding test sets.  



On dataset B, we observe greater prediction errors for larger values. This could be 
explained by the fact that the model has less data to be trained on for large values, 
as we clearly observe lower density for large values on the test set evaluation scatter 
plot in Figure 5. 
 

 
Figure 4: Predictions and ground truth values for training and validation set on dataset A  

 

 
Figure 5: Predictions and ground truth values for training and validation set on dataset B 

  

3.2   Feature importance 

 
One advantage of using gradient boosting trees methods in the explainability of the 
decision making process performed by the model, both at a global scale 
(understanding which feature is important in the model) and at a local scale (which 
feature contributed quantitatively to drive the target value prediction in a specific 
direction). Local scale interpretability can be obtained using methods as shapley 
values [5]. 
 
At the global scale, the feature importance is an insightful tool to assess the 
predictive power of features. In the context of gradient boosting trees, it measures 
and computes the average reduction in impurity across all trees in the ensemble of 
weak learners due to each feature. Therefore, features that are used early in the tree 
construction (closer to the root node) get larger importance value. 



By plotting the feature importance of all features in Figure 6 and 7 for the two 
models, we observe that the top most important features in the dataset A are the 
temperature at 1.5m, the mean wind speed at 10m/100m and the relative humidity. 
In the dataset B the important meteorological features are similar. The point of 
acquisition (area to predict the noise level) is also of prime importance, which 
confirms the fact that the noise level depends on the meteorological conditions but 
also the location of the measure itself. 
 

 
Figure 6: Features importance on dataset A 

 

  
Figure 7: Features importance on dataset B 



In parallel of this machine learning approach, we tried to benchmark these results to 
neural networks based models, but these models gave slightly less performance 
than the one obtained with the gradient boosting trees models. Nevertheless, they 
may give good results and should be tested again if the dataset is very large.  
 
 

4. Discussion  

Machine learning techniques give good results on wind turbine noise prediction, but 
further investigation are necessary in order to draw more reliable conclusions. The 
questions are: is it possible to extrapolate from one site to another? Is it possible to 
model and predict the trend of background noise over one year? and what are the 
minimum parameters and amount of for that scope?  
 
In the near future we can imagine several applications of machine learning in wind 
turbine noise. Some use cases could be: 

- Improving the modelization and understanding of background noise during 
impact study.  

- Extrapolation of missing data at one noise location, in base of meteorological 
data and noise measurements at other locations around the site. 

- Estimation of background noise during the operation of wind turbines, when 
they can’t be stopped. A machine learning algorithm could be implemented in 
the operating system in order to evaluate in real-time the noise emergences in 
the neighborhood. 

- Optimization of the energy production with respect to meteorological 
predictions including the noise criteria. 
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